

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 357-365 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501357365 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 357

Predicting Vulnerabilitiesin Websites based on

a Security Model.

Parth Kasurde
--- ----------

Date of Submission: 01-01-2023 Date of Acceptance: 10-01-2023

--- ---------

ABSTRACT

One of the most urgent roads of correspondence

between different specialist co-ops and clients are

currently web applications. Web applications have

become more essential, however their absence of

safety has likewise become more dangerous. Web

computer programmers need support in tracking

down helpless code because of the restricted time

and assets accessible. They would have the option

to concentrate security reviewing endeavors on the

off chance that there was a plausible method for

foreseeing weak code.

In the proposed approach, input approval and

sterilization code designs are portrayed as huge

marks of web application weaknesses by cross

breed (static + dynamic) program highlights. The

accessibility of information with the weakness data

marked for preparing is a requirement for the

ongoing vulnerable expectation draws near. Past

weakness information is every now and again

inaccessible or in any event deficient for most of

web applications. Accordingly, this approach might

be used to address the two situations where named

earlier information is very much accessible or not

completely accessible. The web program is

partitioned into more modest sinks, and info

approval and disinfection ascribes are created

utilizing dynamic and static program investigation.

I. INTRODUCTION
Many of our daily activities, including

social media, email, banking, shopping,

registrations, and so forth, depend heavily on web

applications. Web application vulnerabilities may

potentially have a bigger impact than flaws in other

types of software because web software is also

more accessible. The security of web applications

is the sole responsibility of web developers.

Unfortunately, they frequently lack the security

training necessary to become familiar with cutting-

edge web security methods and frequently have

little time to follow up on newly discovered

security concerns. They can use input validation

and input sanitization, two secure coding

techniques, to shield their systems from these

widespread flaws.Data length, range, type, and sign

are a few examples of necessary qualities that are

commonly checked during input validation. In

general, input sanitization removes unwanted

characters from an input string by allowing only

those that have been pre-defined and rejecting

those that have special meanings for the interpreter

being taken into account. It makes sense that if the

developers didn't use these strategies properly or to

a high enough degree, an application would be

vulnerable.

It may be possible to anticipate web

application vulnerabilities using the code attributes

that describe the validation and sanitization code

used in the programme.

Based on this premise, we provide a group

of code traits known as input validation and

sanitization (IVS) attributes, from which we

develop precise, scalable, and fine-grained

vulnerability predictors. Because it locates

vulnerabilities at programme statement levels, the

methodology is fine-grained. To extract IVS

properties, we employ both static and dynamic

programme analysis techniques. Static analysis can

be used to evaluate a program's fundamental

attributes.

Dynamic analysis, however, can

concentrate on more precise code features that are

an addition to the knowledge discovered by static

analysis. Instead of exactly proving their

correctness, we merely infer the potential types of

input validation & sanitization code using dynamic

analysis, and then we utilise machine learning to

identify vulnerabilities based on these inferences.

As a result, we address the scalability

problem that dynamic analysis frequently has.

In order to accurately and scalability

predict vulnerabilities, our suggested IVS attributes

reflect relevant properties of a implementations of

input validation and input sanitization methods in

web programmes.Additionally, our method may be

applied in situations when there is a lack of training

vulnerability data because it uses both supervised

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 357-365 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501357365 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 358

learning & semi-supervised learning techniques to

create vulnerability predictors from IVS properties.

CURRENT SYSTEM

The most pervasive and risky web-based

application weaknesses these days that jeopardize

the security and protection of the two clients and

applications are SQL infusion (SQLI), cross-

website prearranging (XSS), remote code execution

(RCE), and record consideration (FI). Input

approval and information sterilization are two

secure coding systems that web engineers can use

to protect their projects from these boundless

defects. Information length, reach, type, and sign

are a couple of instances of fundamental

characteristics that are normally checked during

input approval. By and large, input sterilization

eliminates undesirable characters from an

information string by permitting just those that

have been pre-characterized and dismissing those

that have unique implications for the translator

being considered. It's a good idea that in the event

that the designers didn't utilize these procedures

appropriately or to a sufficiently high degree, an

application would be helpless. Various web

weakness discovery methods, including static

pollutant investigation, dynamic impurity

examination, demonstrating checking, emblematic

and concolic testing, have been proposed to address

these security issues.Approaches for static taint

analysis are generally scalable but useless in

practise due to large false positive rates.

While very accurate since they can

generate actual attack values, dynamic taint

analysis, model checking, symbolic, and concolic

testing methodologies have scaling problems for

large systems because of the path explosion

problem. Scalable vulnerability prediction

techniques are also available.

However, current prediction methods only discover

vulnerabilities just at level of software modules,

which is a coarser level of granularity.

SUGGESTIVE SYSTEM

They can use input validation and input

sanitization, two secure coding techniques, to

shield their systems from these widespread flaws.

Data length, range, type, and sign are a few

examples of necessary qualities that are commonly

checked during input validation. In general, input

sanitization removes unwanted characters from an

input string by allowing only those that have been

pre-defined and rejecting those that have special

meanings for the interpreter being taken into

account. It makes sense that if the developers didn't

use these strategies properly or to a high enough

degree, an application would be vulnerable. We

postulate that the program's validation and

sanitization code characteristics could be used to

anticipate web application vulnerabilities.Based on

this premise, we provide a group of code traits

known as input validation and sanitization (IVS)

attributes, from which we develop precise, scalable,

and fine-grained vulnerability predictors. Because

it locates vulnerabilities at programme statement

levels, the methodology is fine-grained. To extract

IVS properties, we employ both static and dynamic

programme analysis techniques. Static analysis can

be used to evaluate a program's fundamental

attributes. Dynamic analysis, however, can

concentrate on more precise code characteristics

that are an addition to the knowledge discovered by

static analysis. Instead of exactly proving their

correctness, we used dynamic analysis simply to

infer the potential types of input validation &

sanitization code and then applied machine learning

to these inferences to vulnerability prediction.As a

result, we address the scalability problem that

dynamic analysis frequently has.

In order to accurately and scalability

predict vulnerabilities, our suggested IVS attributes

reflect relevant properties of a implementations of

input validation and input sanitization methods in

web programmes. Additionally, we construct

vulnerability predictors (Figure 1) from IVS

features using supervised learning &

semisupervised learning techniques so that our

method can be applied in situations when there is a

dearth of vulnerability data for training.

FIGURE 1: PROPOSED SYSTEM DIAGRAM

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 357-365 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501357365 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 359

1. PROGRAM ANALYSIS, STATISTICAL

AND DYNAMIC

To extract IVS properties, static and

dynamic programme analysis approaches are also

applied. Static analysis can be used to evaluate a

program's fundamental attributes. Dynamic

analysis, however, can concentrate on more precise

code characteristics that are an addition to the

knowledge discovered by static analysis. Instead of

exactly proving their correctness, the dynamic

analysis is just utilised to infer the potential types

of input validation and sanitization code.

2. BACKWARD CUTTERSLICING

By dissecting the data and control flow of

programmes, programme slicing is a technique for

programme analysis and change. A slice is an

executable programme that, given an imperative

programme, must behave exactly like the specific

subset of the behaviour of the original programme.

The programme statements that are (perhaps)

connected to the results of computations made at

programme points and/or variables are referred to

as programme slices.

3. ANALYSIS OF HYBRID PROGRAM

The review depends on the web

application program's control stream diagram

(CFG), program reliance chart (PDG), and

framework reliance diagram (SDG).

One source code articulation is addressed

by one hub in the charts. Subsequently, contingent

upon the circumstance, we can utilize program

proclamation and hub conversely.

A sink is a hub in a CFG that utilizes

factors characterized from sources other than the

info and is subsequently possibly open to enter

control endeavors. Accordingly, we can expect

shortcomings at the assertion level.

The hubs at which information from the external

climate are gotten to are known as information

hubs.

In the event that a variable is characterized

from input hubs, it is polluted. For each sink and

the arrangement of corrupted factors utilized, a

regressive static program cut is processed as the

most important phase in the strategy, as was

recently referenced. As to the cutting measure, the

regressive static cut comprises of any hubs

(counting predicates) in the CFG that could impact

the upsides of the subset of factors. As indicated by

the methodology given by Ferrante et al., we

initially make the PDG for the primary strategy for

a web application program and afterward make

PDGs for the techniques that are called from the

principal strategy. The SDG is then fabricated.

SHARING OF Each and every SINK

Program cutting is a method for consequently

separating programs by taking a gander at their

information and control streams.

Cutting decreases a program to its most essential

structure while keeping up with the capacity to

make a given subset of conduct. For each sink and

the assortment of spoiled factors used in the sink, a

retrogressive static program cut is figured as the

most vital phase in our procedure.

DYNAMIC AND STATISTICAL ANALYSIS

OF EACH SLICE

The developers will employ acceptable

input validation & sanitization techniques, but they

might overlook some inputs for validation since

they don't identify all the data that may be changed

by outside users. As a result, it's critical to first

determine all the input sources when performing

security analysis.The reason for categorising the

inputs into multiple sorts is that each class of inputs

generates a distinct form of vulnerability, and it

could be necessary to secure these various classes

of inputs using various security defence strategies.

PATH CLASSIFICATION IN EACH SCLICE,

A backward static programme slice with

regard to the sink statement and the variables

utilised in the sinks is calculated for each sink. To

extract each path's validation and sanitization

effects on those variables, a hybrid (static and

dynamic) analysis is used to study each slice's path.

The path is subsequently categorised in accordance

with the hybrid analysis's inferred input validation

and sanitization effects.

IVS ATTACHMENTS

These characteristics describe several

kinds of programme operations and functions that

are frequently employed as input validation and

sanitization steps to counter web application

vulnerabilities. These characteristics are used to

categorise functions and operations in accordance

with their security-related characteristics.

Attributes to be extracted using static analysis and

dynamic analysis are called hybrid analysis-based

attributes. Our categorization system includes input

sources because the majority of frequent

vulnerabilities result from incorrectly classifying

inputs.

To put it another way, developers might

employ acceptable input sanitization and validation

techniques, but they might miss some inputs for

validation if they don't recognise all the data that

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 357-365 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501357365 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 360

could be changed by outside users. As a result, it's

crucial in security analysis to first identify all.

This hybrid analysis-based classification is

used for validation and sanitization techniques that

employ both common and uncommon security

functions. We classify them based on their security-

related information if there are just standard

security functions to be classified; otherwise,

dynamic analysis is employed. Various built-in

and/or custom language functions can be used to

provide input validation and sanitization

procedures. Since web application inputs are

naturally strings, specific input validation and

sanitization procedures are typically implemented

using string replacement/matching functions or

string manipulation techniques like escaping. A

group of string functions that accept safe strings or

reject unsafe strings often makes up a solid security

function.These functions are undoubtedly crucial

vulnerability indicators, but we still need to

consider each validation and sanitization function's

goal since various protection strategies are typically

needed to stop various types of vulnerabilities. It is

crucial to categorise the methods used in a

programme path into different types so that our

vulnerability predictors may learn this information

and forecast upcoming flaws when combined with

the related vulnerability data.

BUILDING A MODEL FOR PREDICTING

VULNERABILITY

Building vulnerability predictors can make

use of a variety of machine learning approaches.

Regardless of the specific method employed, the

objective is to discover and generalise sink-related

data patterns that can be effectively used to forecast

susceptibility for new sinks. It is crucial for a

vulnerability analysis approach to be flexible as

more advanced security assaults are found. Re-

training with machine learning allows one to adjust

to new vulnerability patterns.

A. REPRESENTATION OF DATA

A path in a slice of a sink serves as our

unit of measurement, or an instance in machine

learning terms, and we describe each path using

IVS properties. Depending on the amount of

programme operations or functions that are

categorised, the attribute values may range from

zero to an upper bound.

Each path would've been represented by a 33-

dimensional attribute vector because 33 IVS

properties are recommended.

II. PROCESSING OF DATA
The ratio of vulnerable sinks versus non-

vulnerable ones is generally low in our datasets.

This is an issue with data imbalance that is typical

of many vulnerability datasets. The performance of

machine learning classifiers can be significantly

impacted by imbalanced data, as some of the data

may not be learned by the classifier because of its

lack of representation, leading to induction rules

that tend to explain the majority of the class data

and favour its predictive accuracy.We require a

high level of prediction accuracy for this class since

missing vulnerability is considerably more

important than sending a false alarm because for

our situation, the minority data set capture the

instances that are "vulnerable." We employ a

sampling technique known as adaptive synthetic

oversampling to solve this issue. It reduces the bias

caused by the class imbalance problem by

generating synthetic, false data for the minority

class instances to balance the (unbalanced) data.

Since it doesn't involve changing existing

classifiers, it can easily be implemented as a data

granularity pre-processing step.

DIRECTED LEARNING

Classification is an example of supervised

learning because each training instance needs to

have a class label assigned to it. In this work, we

create Random Forest (RF) and logistic regression

models from the suggested features. Statistical

categorization models include LR. Based on one or

more predictor qualities, it can be used to predict

the result (class label) of a dependant attribute.

Models are used to describe the probability of the

potential outcomes of a given incident. The kinds

of monotonic relationships that can be modelled

between the properties of the predictor and the

probability of vulnerability are adjustable in the

context of logistic regression analysis. RF is an

ensemble learning technique for categorization that

uses a number of classifiers with tree

structures.When a group of learners rather than a

single learner produces the final forecast, the

predictive accuracy is frequently considerably

increased.

Each tree casts a vote (classification) based on the

input sample, and the forest outputs the

classification that received the majority of votes

from the trees.

LEARNING THAT IS SEMI-SUERVISED

As individual classifiers are combined in

ensemble learning, a sizable amount of labelled

data is often needed for training. Relevant and

tagged data that are available for learning may be

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 357-365 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501357365 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 361

scarce in some industrial environments. For

training, semi-supervised algorithms [39] combine

a modest amount of labelled data with a

considerably larger amount of unlabeled data.

When there are very few labelled data, this

technique that uses unlabeled data can enable

ensemble learning.

There are various benefits to combining

ensembles and semi-supervised learning. Unlabeled

information is used to enhance labelled training

samples and enable ensemble learning. With

unlabeled material that was labelled by the

ensemble of all other learners, each individual

learner improved. There are a few distinct kinds of

semi-supervised approaches that have been

proposed in the literature, including EM-based,

clustering-based, and disagreement-based learning.

However, none of these methods have yet been

investigated for vulnerability prediction. We

investigate the application of an algorithm dubbed

Co Forest, Co-trained Random Forest (CF), which

applies semisupervised learning to RF based on

these objectives. It is a semi-supervised,

disagreement-based learner. In order to utilise

unlabeled data, CF employs several, different

learners, combines them (semi-supervised

learning), and maintains a significant degree of

disagreement between the learners.

ADVANCED PREDICTOR

With the use of input validation &

sanitation attributes, machine learning algorithms,

and other factors, a qualified web application

vulnerability predictor can be created. We can

create a web application predictor that is highly

accurate, fine-grained, and scalable by using the

aforementioned features.

A. DERIVATION OF IVS ATTRIBUTES in V

IMPLEMENTATION

It very well might be feasible to expect

web application weaknesses utilizing the code

ascribes that depict the approval and sterilization

code utilized in the program.

In view of this reason, we give a gathering

of code qualities known as information approval

and disinfection (IVS) credits, from which we

create exact, versatile, and fine-grained weakness

indicators. The strategy is granular in light of the

fact that it spots defects at the program

proclamation level. To remove IVS properties, we

utilize both static and dynamic program

investigation strategies. Static investigation can be

utilized to assess a program's crucial traits.

Dynamic examination, nonetheless, can focus on

more exact code qualities that are an expansion to

the information found by static investigation.

Rather than precisely demonstrating the legitimacy

of info approval and sterilization codes, we just

construe them through unique investigation.

Part B: Rundown of IVS ascribes,

1. Client-available info got from HTTP demand

boundaries like HTTP Get

2. Record based input, like treats and XML,

3. Text-data set - Admittance to a data set for text-

based input

4. Numeric-data set - Getting to a data set for

numeric-based input

5. Meeting: Information that is gotten through a

super durable information object, like a HTTP

Meeting

Uninit - A uninitialized program variable

7. Un-pollute - Capability that profits information

that has been foreordained or information that has

not been adjusted by different clients.

8. Known-vuln-client - A custom capability that

has in the past prompted security issues.

9. Known-vuln-sexually transmitted disease - An

implicit language highlight that has in the past

prompted security issues.

10. Spread - A capability or strategy that engenders

a string's whole or halfway worth.

11. Numeric Change from a text to a numeric

capability

DB-administrator

12. Sifting capability for inquiry administrators like

(=)

DB-remark delimiter

13. Separating of question remark delimiters,

including (-)

14. The DB-unique capability channels extra

information base exceptional characters, for

example, (x00) and (x1a), that are unmistakable

from the ones recorded previously.

15. The (') and (") string delimiters are separated by

the string-delimiter capability.

Lang-remark delimiter 16. Separating capability for

programming language remark delimiters like (/)

17. The "Other-delimiter" capability channels other

delimiters other than those recorded above, for

example, (#).

18. The Content label capability channels client

script labels that are dynamic, for example,

(script>).

19. A HTML-label capability that channels out

(div>) labels from static client scripts

20. Occasion controller capabilities like (onload =)

that disallow the use of contributions as the upsides

of client-side occasion overseers.

Separating invalid byte (%00) with the invalid byte

capability

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 357-365 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501357365 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 362

22. Spot Separating Capability Speck (.)

23. The dotdot-slice (../) grouping separating

capability

24. The oblique punctuation line sifting capability

()

25. A cut (/) sifting capability

26. The newline (n) sifting capability

The colon (,) or semi-colon channel capability is

number 27. (;)

28. The Other-extraordinary Capability sift through

some other exceptional characters not recorded

previously.

29. An encoding capability that changes the

configuration of a string

30. The canonicalize capability lessens a string to

its most fundamental, standard structure.

31. An index way or URL sifting capability

Limit-length is a capability or methodology that

confines a string's length to a specific worth.

III. INTERFACE DEVELOPMENT
The creation of the interface is the system's final

element.

3.1 Interface Design

The interface is constructed to allow interaction

using Java and the net beans environment. The

ontology model, rules, and application interface are

integrated using the Jena API.

FIGURE 2: APPLICATION INTERFACE

3.2 Usefulness

As shown in Figure 2, the interface is

made to be user-friendly. It has two basic

components: the first section collects user input,

and the second part displays data.Below is a

discussion of the application interface's specific

features.

The ontology model, the rules, and the

SPARQL query are loaded to anticipate the attacks

in the first section once the user selects the

vulnerability from the list box and submits the

query. To manage any errors, the alert message is

displayed as seen in Figure 3.

FIGURE 3:APPLICATION INTERFACE

WITH ALERT

As indicated in Figure 4, the second step involves

predicting and categorising attacks based on user

input. The necessary defences against the attack

and safeguards against web application attack

prevention are also shown.

FIGURE 4: PREDICT AND CLASSIFY

ATTACKS

IV. EVALUATION
A web application that addressed the weaknesses

and implemented defences against the anticipated

assaults was created in order to test the proposed

solution.

Less vulnerabilities were discovered when the web

app was scanned. The accuracy and prediction rate

of the information that was retrieved were

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 357-365 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501357365 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 363

measured using the parameters precision, recall,

and F-measure.

These are used in their computation:

Precision equals Right / (Right + Wrong)

Correct/(Correct + Missed) = Recall

Where,

Correct: Both the algorithm and a human are able

to extract the expected number of records from the

overall number of irrelevant records (information).

Wrong: The system, not a human, pulls the number

of expected records from the total amount of

irrelevant records (information).

Precision + Recall = F-Measure =

(2*(Precision*Recall))

Figure 5 displays the suggested system's prediction

rate plotted for each attack. The graphic shows that

each attack has a high prediction rate, which aids

attackers in understanding the implications of the

web application's developing vulnerabilities.

The findings of the suggested system's prediction

rate are summarised in Table 1 and compared to

security ontology .

Table 1 makes it evident that the proposed system

uses the inference process to forecast more attacks

than the current system does.

Additionally, the attack classification is contrasted

with the current framework. The comparison chart

for the assault classification percentage is shown in

Figure 6. attack-classification capacity of the

current system is low.

FIGURE 5: PREDICTION RATE OF

PROPOSED SYSTEM

The experimental data demonstrates that

our proposed system outperforms the current

system in terms of prediction ability and attack

categorization rate. When compared to previous

systems, the system's average prediction rate is

high and it successfully predicts web application

attacks.

FIGURE 6: Comparison of Attack

classifications

In addition, compared to the current

system, our proposed system attack categorization

rate is very high. This is because by assessing the

vulnerabilities that may be exploited by the assaults

and the threats that were deployed, our system can

successfully forecast advanced attacks. In order to

predict the majority of attacks, an inference method

is employed to learn new information and rules.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 357-365 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501357365 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 364

V. CONCLUSION AND NEXT WORK
The survival indicates that e-commerce

and information exchange are growing quickly, but

security of personal information is also crucial.

Hackers and crackers can access users' private

information and take advantage of weaknesses in

web applications. Web application developers and

testers often create insecure applications because

they lack sufficient awareness of threats,

vulnerabilities, and attacks.

Although there are many technologies

available to address this issue, none of them are

fully safe and cannot be used to construct secure

web applications. Web application threats can be

predicted and categorised using the ontology-based

approach.

The suggested system analyses threats and

vulnerabilities that could be used in web

application assaults.The suggested system is

excellent at identifying threats and weaknesses that

could be used in web application assaults.

Ontology models for threats,

vulnerabilities, attacks, and rules are used to

successfully and efficiently forecast sophisticated

attacks. The list of attacks is generated by an

inference engine using knowledge about web

application vulnerabilities. The severity of the

attacks on security objectives determines how the

attacks are classed (Confidentiality, Integrity and

availability).

The suggested solution also offers

recommendations for attack mitigation and

prevention. For developers and testers to handle

assaults and create safe applications, this

information is highly helpful. The proposed

ontology model can be used in subsequent work to

identify web application threats during testing.

BIBLIOGRAPHY
[1]. Khalid, M.N., Iqbal, M., Alam, M.T., Jain,

V., Mirza, H., Rasheed, K.: Web unique

method (WUM): an open source blackbox

scanner for detecting web vulnerabilities.

Int. J. Adv. Comput. Sci. Appl. (IJACSA)

8(12), 411–417 (2017)

[2]. Kaur, D., Kaur, P.: Empirical analysis of

web attacks. Proc. Comput. Sci. 78, 298–

306 (2016)

[3]. Alhassan, J.K., Misra, S., Umar, A.,

Maskeliūnas, R., Damaševičius, R.,

Adewumi, A.: A fuzzy classifier-based

penetration testing for web applications.

In: Rocha, Á., Guarda, T. (eds.)

Information Theoretic Security. AISC,

vol. 721, pp. 95–104. Springer, Cham

(2018). https://doi.org/10.1007/978-3-319-

73450-7_10

[4]. M. Vrancianu, L.A. Popa, Considerations

regarding the security and protection of e-

banking services consumers’ interests, The

Amfiteatru Economic Journal 12 (28)

(2010) 388–403.

[5]. J. Kannan, P. Maniatis, B.G. Chun, Secure

data preservers for web services, in:

Proceedings of the 2nd USENIX

Conference on Web Application

Development, USENIX Association,

2011, pp. 3–3.

[6]. J. Undercoffer, J. Pinkston, A. Joshi and

T. Finin, “A target-centric ontology for

intrusion detection”, In 18th International

Joint Conference on Artificial Intelligence,

pp. 9-15, March 2004.Ding, W. and

Marchionini, G. 1997 A Study on Video

Browsing Strategies. Technical Report.

University of Maryland at College Park.

[7]. L.Daniel Costa, L. Matthew Collins,

J.Samuel Perl, J.Michael Albrethsen,

J.George Silowash, L. Derrick Spooner,

An Ontology for Insider Threat Indicators

Development and Applications, Software

Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA, USA .

[8]. A. Herzog, N. Shahmehri, C. Duma, An

ontology of information security,

Techniques and Applications for

Advanced Information Privacy and

Security: Emerging Organizational,

Ethical, and Human Issues (2009) 278–

301.

[9]. J. McHugh, Testing intrusion detection

systems: a critique of the 1998 and 1999

darpa intrusion detection system

evaluations as performed by Lincoln

laboratory, ACM Transactions on

Information and System Security 3 (4)

(2000) 262–294.

[10]. Carlos Blanco, Joaquín Lasheras, Eduardo

FernándezMedina, Rafael Valencia-García

and Ambrosio Toval, “Basis for an

integrated security ontology according to a

systematic review of existing proposals”,

Computer standards and Interfaces, Vol.

33, No. 67, pp. 372- 388, June 2011.

[11]. S. Fenz, G. Goluch, A. Ekelhart, B. Riedl,

E. Weippl, Information security

fortification by ontological mapping of the

iso/iec 27001 standard, in: 13th Pacific

Rim International Symposium on

Dependable Computing, 2007, PRDC

2007, IEEE, 2007, pp. 381–388.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 357-365 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501357365 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 365

[12]. S.Parkin, A. Moorsel, and R. Coles,

(2009). An information security ontology

incorporating humanbehavioural

implications. In Proceedings of 2nd

International Conference on Security of

Information and Networks, pp. 46–55.

[13]. Nadya ElBachir El Moussaid, Ahmed

Toumanari, "Web Application Attacks

Detection: A Survey and Classification",

International Journal of Computer

Applications, 2014,Vol 103, No.12.

[14]. F. Abdoli and M. Kahani, "Ontology-

based Distributed Intrusion Detection

System", In Proceedings of the 14th

International CSI Computer Conference.

[15]. Golnaz Elahi, Eric Yu, and Nicola

Zannone, “A Modeling Ontology for

Integrating Vulnerabilities into Security

Requirements Conceptual Foundations”,

Lecture Notes in Computer Science,

Springer Berlin Heidelberg, pp. 99-114,

2009.

